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A conservative zonal-boundary condition that was used with explicit integration schemes is 
extended to implicit, upwind, relaxation schemes; in particular to the Osher scheme. The rate 
of convergence was found to increase considerably with the use of the implicit, relaxation- 
zonal-scheme when compared to the explicit scheme. The relaxation-zonal scheme has ako 
been used in a time-accurate mode. Results demonstrating the time accuracy of the scheme 
and the feasibility of performing calculations in cases where some parts of the given system 
move relative to others (e.g., rotor-stator configurations) are presented. 0 1986 Academic Press, 

Inc. 

INTRODUCTION 

The “zonal” or “patched-grid” approach is one in which calculations are perfor- 
med on several grids that are patched together at zonal interfaces. This makes the 
solution of geometrically complex problems a relatively straightforward task. The 
solution is obtained by (1) dividing the complex region into several simpler sub- 
regions or zones, (2) generating grids for each zone independently using existing 
grid generation schemes, and (3) solving the equations of motion in each zone. The 
interior points of each zone are updated using a standard integration scheme, and 
the points on the zonal interfaces are updated using a zonal-boundary condition. In 
addition to simplifying the complex geometry problem, the zonal or patch-grid 
approach has the following advantages: (1) grid points can be selectively added to 
flow regions requiring tine grids to resolve rapidly changing flow variables, and (2) 
data corresponding to a single zone only needs to reside in the main memory of the 
computer at any give time; the remaining data may reside on tape or disk (this 
alleviates the problem of limited computer storage). 

A zonal-boundary scheme is developed for the Euler equations cast in generalized 
coordinates in Refs. [ 1 ] and [2]. It is fully conservative and permits distortion-free 
movement of flow discontinuities such as shocks and slip surfaces across zonal 
interfaces. Several example calculations including supersonic flow over a cylinder 
and blast-wave diffraction by a ramp demonstrate the robustness of the scheme and 
also the quality of the results that are possible with the zonal-boundary scheme. 
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The zonal scheme as developed in Refs. [ 1 ] and [2] can be used with lirst-order- 
accurate, explicit integration schemes. However, first-order-accurate integration 
schemes are insufficient to produce accurate results for a general class of problems. 
In Ref. [3] the zonal scheme of Rai et al. and Rai [ 1,2] is extended so that it can 
be used in conjunction with second-order-accurate, implicit, integration schemes 
such as the Beam-Warming scheme [4] and an implicit form of the Osher scheme 
[S]. Both these integration schemes use approximate factorization to retain the 
block-tridiagonal nature of the implicit equations in two- and three-spatial dimen- 
sions. The implicit zonal-boundary condition, however, is developed so that it can 
be used with both factored and unfactored schemes. 

The use of implicit integration schemes in conjunction with an implicit zonal- 
boundary scheme results in increasing the convergence rate by more than an order 
of magnitude (when compared to the explicit calculations) in the inviscid 
demonstration calculations of Ref. [3]. The importance of implicit zonal schemes 
for viscous calculations can hardly be overemphasized. The fine grids required to 
resolve boundary layer properties result in extremely restrictive time-step 
limitations for explicit schemes and make viscous calculations with explicit schemes 
impractical. To efficiently perform implicit, viscous calculations on patched grids, it 
is important to treat the zonal-boundary points implicitly as well. 

The factored implicit integration schemes used in Ref. [3] have the following dis- 
advantages: 

(1) The convergence speed (for problems with asymptotic steady states) 
reaches a maximum at a rather small step-size value instead of increasing con- 
tinually with increasing step size. 

(2) Factored, implicit integration schemes are more difficult to program in a 
zonal setting when compared to relaxation schemes. 

Chakravarthy [6] presents a relaxation approach to solving the Euler equations. 
Both time-accurate and steady-state results can be obtained with this technique. 
The relaxation approach can be used with a certain class of upwind schemes. 
Relaxation is possible because of the desirable properties of this class of schemes; in 
particular, the total variation diminishing (TVD) property. The TVD property 
provides us with the diagonal dominance that is required to perform stable 
calculations with the relaxation approach (for large time steps). Typically, 
relaxation schemes do not have the disadvantages of factored schemes mentioned 
above. Further details of the relaxation approach can be found in Ref. [6]. 

In this study we investigate the possibility of using the relaxation approach in a 
zonal setting where several grids are patched together to discretize the region of 
interest. The relaxation approach has the advantage that it results in a simpler for- 
mulation of the implicit, zonal-boundary condition than that necessary for factored 
integration schemes. However, it should be remembered that the integration scheme 
has to be TVD for relaxation to work. The implicit, factored zonal approach [3] is 
the preferred technique when the integration scheme is not TVD. The equations 
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necessary to merge the zonal and relaxation approaches are presented in the follow- 
ing section. Demonstration calculations including supersonic flow over a cylinder 
and the motion of a Lamb-type vortex through a zonal boundary are presented. 
The cylinder calculation demonstrates the increase in convergence rate and the con- 
sequent decrease in computing costs (when compared to an explicit scheme) that 
are possible with the relaxation approach. The vortex calculation demonstrates the 
time-accuracy and quality of solutions possible with the implicit, zonal-relaxation 
scheme. 

One of the most important applications of the zonal approach is the treatment of 
flow regions that are associated with bodies which have some parts that move 
relative to others; for example, the helicopter rotor-fuselage combination or the 
rotor-stator configurations found in turbines and compressors. It is impractical to 
have a single grid that envelopes both the moving and stationary parts of the 
system. This problem can be overcome simply by containing the stationary parts in 
one zone (or set of zones) and the moving parts in another zone (or set of zones). 
The zones that contain the moving parts can be made to be stationary relative to 
the moving parts. This approach gives rise to zonal boundaries (where the moving 
and stationary zones meet) at which one set of grid points move relative to others. 
The zonal-boundary treatment in this case has to be time-accurate (in addition to 
the usual requirement of spatial accuracy) to yield reasonable results. The time- 
accuracy that is possible in such zonal calculations has already been demonstrated 
in [3]. In this study an application of this technology is presented. The application 
consists of two parabolic-arc airfoils that move relative to each other similar to the 
airfoils in a rotor-stator combination. Results in the form of surface pressure 
histories and time-varying pressure contours are included. 

THE INTEGRATION SCHEME 

The implicit, relaxation-zonal scheme is developed within the framework of an 
iterative, implicit relaxation scheme [6]. In Ref. [6], the relaxation technique is 
developed in a very general manner so that it can be used with several upwind 
schemes. In this study, a particular form that can be used with the first- and second- 
order accurate Osher schemes is presented. Although the flux linearizations that are 
required for the technique are developed with the Osher scheme in mind, they can 
be used equally effectively with the split-flux scheme [7] and with Roe’s 
scheme [S]. 

To develop the finite-difference equations for the relaxation technique we con- 
sider the unsteady Euler equations in two dimensions 

Q,+E,+F,=O. 

The vectors Q, E, and F are given by 
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where p is the density, p is the pressure, u and u are velocities in the x and y direc- 
tions, respectively, and e is the total internal energy per unit volume 

e=-+P (u*+u*). P 
y-l 2 

Establishing the independent variable transformation 

t = t, 

5 = ax, Y, t), 

? = rl(x, y, t), 

and applying this transformation to Eq. (1 ), the following is obtained: 

&+&+Fq=oo, 

where 

0 = Q/J, 

(3) 

(4) 

(5) 

(6) 

The notation E(Q, 5) and &Q, q) is used to show the dependence of these quan- 
tities on the metrics of the transformation. 

A fully implicit conservative finite-difference scheme for Eq. (5) can be written as 

f?+’ 
+ J.k + 112 (7) 

where Ej+ 112 k and Fj,k +y2 are numerical fluxes that are consistent with the trans- 
formed physical fluxes E and F. Equation (7) represents a fully implicit scheme 
since the fluxes are evaluated at the (n + 1)th time-level. Evaluation of these fluxes 
at the (n + 1)th time-level results in a system of nonlinear equations that need to be 
solved in an iterative manner. The usual strategy that is imployed at this stage is 
the linearization of the numerical fluxes with respect to the time-like variable r. The 
resulting system of linear equations is then solved in order to update the dependent 
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variables. Since the terms that appear in the linearization process depend on the 
scheme used to evaluate the numerical fluxes, we now confine the development to 
the schemes used in this study, that is, the first- and second-order Osher schemes. 

The First-Order-Accurate Osher Scheme 

The numerical flux for the first-order-accurate Osher scheme is given by Ref. [9], 

&I+1 
.I + 1/W = tb%?j,k, tj+ 1/u) + &Qj+ r,k, tj+l,Z,k) 

-AE+(Qj,k, Qj+,,k, tj+1/2,k)+AE-(Qj,/cv Qj+,,/cv tj+1/2,k)l”+‘, (8) 

where 

CAE’(Qj,k, Qj+ l,k, tj+ 1/2,k)]n+’ = g (Q, lj+l/2,k)]* dQ* (9) 

The numerical flux 4.2: ,,2 can be obtained in a similar manner. The evaluation of 
the integral in Eq. (9) can be found in Ref. [9]. 

The time-linearization of the numerical flux I?;$,& k requires the linearization of 
the integral given in Eq. (9). The linearization of this integral is a cumbersome 
process that is computationally expensive. Hence, the following approximation [S] 
is made to simplify the linearization process: 

I]’ g$ CE’tQ, <j+1/2,k)l, 

where 

"(Q, tj+1/2,k)= I]* Q. 

Substituting Eq. (10) into Eq. (9) yields 

Equations (8) and (12) together yield 

(E~~ll/2,k)approx = [E+CQj,k, cj+ 1/2,k) + E-CQj+ I,kv tj+ 1/2,k)ln+ ‘. 

(10) 

(11) 

(12) 

(13) 

Linearizing Eq. (13) with respect to t and making use of Eq. (lo) once again, it can 
be shown that 

(14) 
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where 

(15) 

The numerical flux for the first-order-accurate Osher scheme using this approximate 
linearization can now be written as 

-@jZ,2,k@nearized) = gy”+ L/2,k + CA”+(Qj,k, <j+ 1/2,k) AQj,k 

+ A-CQj+ I./c, tj+ 1,Z.k) AOj+ I,kIn, (16) 

where ,??J’+ ,,2 k , is as defined in Eq. (8) (except that the time-level at which it is 
evaluated is n and not (n + 1)). It should be noted that the use of the approximate 
linearization does not result in any loss of the conservative properties of the scheme. 

The iterative implicit technique of Ref. [6] as applied to the first-order-accurate 
Osher scheme now takes the form 

where &J’ is an approximation to Q”+’ and A and V are forward and backward dif- 
ference operators, respectively. When p = 0, Qp = en, and when Eq. (17) is iterated 
to convergence at a given time-step, Qp = Q’+‘. It should be noted that, because 
the left-hand side of this equation can be made equal to zero at each time-step (by 
iterating to convergence), linearization errors can be driven to zero during the 
iterative process. For problems where only the asymptotic steady-state is of interest, 
the iteration process need not be carried to convergence at each time-step. In fact, 
when the number of iterations is restricted to one, the scheme reverts to a conven- 
tional, noniterative scheme [4] (but unfactored). 

Unfortunately, Eq. (17) is extremely time-consuming to solve in a direct fashion 
because of the large bandwidth of the matrix on the left-hand side. Whereas fac- 
torization reduces the bandwidth of this matrix (the single matrix is converted into 
two tridiagonal matrices), it introduces a new set of problems. It is at this point 
that relaxation schemes can be used efficiently to solve Eq. (17). The iterative form 
of Eq. (17) is ideally suited to relaxation schemes. Although there are a host of dif- 
ferent relaxation schemes available, the ones that have been chosen for this study 
are the point-wise and line-relaxation schemes of the non-Gauss-Seidel type. The 
point-wise relaxation scheme is obtained by discarding all the nondiagonal terms 
on the left-hand side of Eq. (17). This yields 

Aj~-A~~+B~k-B,~ 
A5 4 ’ >I P(Q~~l-Q;k)=r.h.s. of Eq. (17). (18) 
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The line-relaxation scheme is obtained by retaining all the diagonal terms and all 
the terms that correspond to points on a given line, for example, a constant q-line. 
This yields 

If the constant t-lines had been chosen instead, the resulting equations would be 

[ 
I+%(,i:,A,)+~(O,~~+~,B)]‘(P7:l-~~~)=r.h.s.ofEq.(17) (20) 

Variants of the line and point-wise relaxation schemes such as the zebra and 
checkerboard schemes are also discussed in Ref. [6]. 

Although Eq. (17) is fully conservative (in spite of the approximate linearization), 
Eqs. (18 k(20) are not conservative in time unless they are iterated to convergence 
at each time-step (this would be necessary for time-dependent problems where the 
transients are of interest). However, for problems where only the time-asymptotic 
solutions are required, Eqs. (18)-(20) yield solutions that satisfy the conservation 
laws at steady-state without requiring iteration-to-convergence at each time-step. 
This is because the right-hand side of these equations is fully conservative. 

THE SECOND-ORDER-ACCURATE OSHER SCHEME 

The numerical flux for the fully implicit second-order-accurate Osher scheme is 
given by Ref. [9], 

p+1 
J + l/.&k = $‘$,‘l,,,[first-order Osher scheme] + f[dE+(Qj- l,k, Qj,k, tj+ 1,2,k) 

- AEp(Qj+ l,k? Qj+Z,k, tj+ 1/2,k)ln+‘, (21) 

where AE’ are evaluated as before. Note that the numerical flux for the second- 
order scheme is denoted by E;2j,2,k to distinguish it from the numerical flux for the 
first-order Osher scheme. Linearization of all the terms in Eq. (21) would result in 
block-pentadiagonal matrices for line-relaxation schemes. Hence, only the terms 
corresponding to the first-order scheme and those second-order terms that con- 
tribute to the diagonal elements of the matrix are linearized (private com- 
munication, S. R. Chakravarthy, Rockwell International Science Center). The 
resulting iterative, implicit scheme takes the form 



106 MAN MOHAN RAI 

-Y& Cz’(Qj- 1,/c, Qj,k, tj+ 1/2,k )-z+(Qj-2,k, Qj-l,k, ~j-l/2,k)lp 

+2A5 L CAE-(Qj+ 1,/c, Qj+,,k, tj+ 1/2,/c) -m-(Qj,ky Qj+ l,k, <j- 1/2,k)lP 

- 

-6 CAF+(Qj,k-l~ Qj,k, qj.k+1/2 )-m+(Qj,k-2, Qj,k-1, ~j,k-lI/2)lP 

+2A4 * Czp(Qj,k+l, Qj,k+2, tlj,k+l/2)-~-(Qj,k, Qj,k+I, ?j.k-tlj2)lPe (‘2) 

The terms that result in second-order spatial accuracy [on the right-hand side of 
Eq. (22)] have been modified, that is, these flux differences are obtained from a 
flux-limiting process [9]. Flux-limiting is essential to provide the diagonal 
dominance required for relaxation schemes [6]. The linearization of the second- 
order terms is carried out before the flux limiting process is performed. 

The point-wise relaxation scheme is now obtained by discarding all nondiagonal 
terms, that is, 

= r.h.s. of Eq. (22) (23) 

and the line-relaxation scheme corresponding to Eq. (19) takes the form 

x (QjFk+l- &k) = r.h.s. of Eq. (22). (24) 

The comments regarding the conservative properties of the first-order schemes 
apply to the second-order schemes as well. As stated earlier, although Eqs. 
(17~(24) have been developed for the Osher scheme, they are equally applicable to 
the split-flux scheme and Roe’s scheme; only the evaluation of the fluxes on the 
right-hand side of these equations change according to the particular integration 
scheme that is chosen. 
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THE ZONAL-BOUNDARY SCHEME 

The implicit, zonal-boundary condition is similar to its explicit counterpart 
insofar as the computation of the numerical fluxes (which appear on the right-hand 
side of Eq. (17)) in the vicinity of zonal boundaries is concerned. Hence, in this sec- 
tion the explicit, zonal-boundary scheme [2] is first outlined, followed by a presen- 
tation of the necessary extensions to this scheme to make it compatible with 
implicit relaxation techniques. 

Review of the Explicit Zonal Scheme 

Consider the two curvilinear grids used to discretize the flow region shown in 
Fig. 1. The line AB represents the zonal boundary that separates the two grids used 
to discretize the given region. Let I and m be the indices used in the <- and q-direc- 
tions, respectively, in zone 1, and let j and k be the corresponding indices for 
zone 2. The notation used in this study is different from that used in Ref. [2] (m 
and k increase in opposite directions in [2]). Let n represent the time-step for both 
zones. A superscript within parentheses will denote the zone to which a given quan- 
tity belongs, for example, dz (‘I denotes the marching step-size in zone 1. 

SYMMETiY BOUNDARY 

FIG. 1. Two-zone grid to illustrate the zonal scheme in curvilinear coordinates. 
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Establishing two independent variable transformations (one for each grid) 

z(i) = t, 

p = <“‘(X, y, t), 
1 for zone 1 i= 
2 for zone 2 (25) 

t+” = v]“‘(X, y, t), 

and applying these transformations to Eq. (1 ), the following equation is obtained 

&i,, + Ep, + Fy, = 0, i= 1, 2, (26) 

where 

E(i)[Q, <(‘)I = [<WQ + ((i)E+ <(i)F]/J(O I x Y , 
j?W[Q, rl(i)] = [?ii)Q + rt.;)E+ q$Ofl/J(i), (27) 

$0 = <(i+(f) _ l(i)t(d x y .c y . 

Let the conservative difference schemes used to integrate Eq. (26) be given by 

A!%,!,! I &’ I/Z,,,, - &-‘I,z,~ + f’i:,‘n + 112 - fi,!d - 1/2 = o 

AT”’ At”’ A?+” 

and 

A?p’ 
= 0, 

(28) 

(29) 

where E(i) and pi’ are once again numerical fluxes consistent with the transformed 
fluxes E and F For the explicit integration scheme these numerical fluxes are 
evaluated at the nth time-level. 

The explicit zonal scheme consists of the following three steps: 

(1) Integration of the dependent variables at grid points (of both the grids) 
that do not belong to the zonal boundary using Eqs. (28) and (29). 

(2) Integration of the dependent variables at the zonal-boundary points of 
one of the zones (e.g., zone 2 of Fig. 1) using a scheme that conserves fluxes across 
the zonal boundary. 

(3) Calculation of the dependent variables at the zonal-boundary points of 
the other zone (e.g., zone 1 of Fig. 1) such that the dependent variables are con- 
tinuous across the zonal boundary. 

The implementation of the first step of the zonal scheme is straightforward. The 
implementation of the second step is described below. Assume that the zonal-boun- 
dary points of zone 2 are to be updated using the finite-difference scheme of 
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Eq. (29). This calculation requires the use of the fluxes g,&. These fluxes have to be 
calculated so that global conservation is maintained. A typical cell (points RSTU) 
of a zonal-boundary point (j, 1) is shown in Fig. 1. The points R and S are mid- 
points of the cells in which they reside whereas the points T and U are obtained as 
follows: The constant j-lines of zone 2 are extrapolated into zone 1 to intersect the 
line CD (CD corresponds to m = m max - 4 in zone 1 and to k = 4 in zone 2). The 
intersection points have the indices (j, f). Point T is midway between the points 
( j + 1, 4) and ( j, f) and point U is midway between points ( j, 4) and ( j - 1, f). The 
global conservation property can be shown to be satisfied if the following 
relationship is satisfied 

= fC-F=(ltLn*x - l/2 + t”,~a!,,,m,ax - L/21 + c 4,!Lx - I/2’ (30) 
I=2 

A close examination of Eq. (30) shows that each side of this equation is nothing 
but a discrete form of the line integral of the numerical flux E along the line CD in 
Fig. 1 whereas the equation itself represents flux conservation across the zonal 
boundary. Equation (30) is only a necessary condition and is not sufficient to define 
the fluxes &‘/2 in a physically meaningful way. 

Assume that the g,$2 are obtained by interpolating the e.:,,,,, _ 1,2, that is, 

where the Nj,, are interpolation coeffkients and p and q define the set of fluxes of 
zone 1 that will be used in the interpolation. We now describe a simple way of 
obtaining the interpolation coefficients Nj,, such that Eq. (30) is automatically 
satisfied. Let the line CD in Fig. 2 correspond to the line CD in Fig. 1. The dots 
represent the grid points of zone 1 and the crosses represent those of zone 2. A run- 
ning parameter s is established along the line CD. The quantity s represents the dis- 
tance of a point from the point C along the curve CD. Representative numerical 
values of fl,:,,, _ 1,2 are plotted on the positive y axis. Assume a piece-wise con- 
stant variation of the numerical fluxes fi,$,,X- ,,2 along CD, that is, fi[,,l,!,,,- 1,2 is 
costant between sj’),,, and $I:),,,. Consider a point of zone 2, ( j, 1). The g,:s2 is 
now calculated from 

(32) 
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FIG. 2. Piece-wise constant variation of the numerical flux P as a function of S. 

where the values of N,,, are given by 

0 if 4: ,,*, sj9 1,2 4 $3 1,2 

Nj.1~ 
0 if s!:',,~, ~{2,,~3sj~,,~ 

[min(s!2) ,+1/2y 4:)1,2)-max(4!2)1,2, 43, )I 
s(l) 

I+ l/2 - sj’),,, 

(33) 

The simple expressions of Eq. (33) are valid only for a piece-wise constant variation 
of the fl,:,,,,, - I,2. A piece-wise linear or any other variation would result in dif- 
ferent formulae for the interpolation coefficients N,,. Equation (33), in an indirect 
manner, also yields the endpoints in the interpolation, p and q (p and q include 
only that set of fluxes of zone 1 that are multiplied by a nonzero interpolation coef- 
ficient for the given flux of zone 2). The treatment of the points (1, 1) and 
( j max, 1) and the calculation of the metrics used in the integration of the zonal 
points can be found in Ref. [2]. 

The final step of the zonal scheme consists of updating the zonal-boundary points 
of zone 1 so that the dependent variables are continuous across the zonal boundary. 
This is very simply done by an interpolation process. The dependent variables at 
the zonal-boundary points of zone 1 are obtained by interpolating the updated 
dependent variables at the zonal-boundary points of zone 2. The linear inter- 
polation of the dependent variables and the line integration of the piece-wise con- 
stant fluxes results in first-order accuracy at the zonal boundary. Higher order 
interpolations are currently being investigated. 

The foregoing discussion assumed that the numerical fluxes &,j,,,_ 1,2 were 
readily available. For the first-order-accurate Osher scheme an examination of 
Eq. (8) will show that only the quantities Ql,mmax-, , Ql,mmax and, tfLmmax- 1,2 are 
sufficient to define fi,J,J,,,,,, _ 1,2. Since these quantities are easily available, 
calculation of fi,:,,, _ 1,2 is a simpler matter. However, for the second-order- 
accurate Osher scheme, Eq. (21) shows that the flux difference 

*F- (Q:!Lw Q:!L,x + 13 v:!L,x - 1,2) 

is required to calculate F,,J,j,,, _ ,,2. The calculation of this flux difference, in turn, 
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requires the vector Q$,,, + , (the line m max + 1 in zone 1 corresponds to the line 
k = 2 in zone 2). The vector Q{&,,, + i is determined simply by extrapolating the 
constant-l lines into zone 2 to ‘intersect the line k = 2 in zone 2. The values of 
Q(l) ,,mmax+ i are then interpolated from the values of Q$). A simple linear inter- 
polation was used to obtain the results presented in this paper. An alternative to 
this procedure that avoids the interpolation described above, is one which 
calculates the flux differences dFP(Q,!,:), QJ,;), vJ,:I/~) and which performs a flux 
balance as follows: 

Note that in Eq. (34) the flux balance is being performed in the opposite direction 
(compared to the flux balance described earlier). Similar procedures, that is, inter- 
polation or an additional flux balance, are required to calculate the numerical flux 
q,$ also. Both methods, described above, do not in any way affect the conservative 
property of the zonal scheme. The additional flux difference terms that are required 
for the second-order-accurate integration scheme are once again perfectly balanced 
across the zonal boundary. 

The Implicit, Relaxation-Zonal Scheme 

Now that the calculation of the boundary fluxes has been described it remains to 
be shown how these ideas fit into the schemes as given by Eqs. (18)-(24). The right- 
hand side of all these equations can be calculated at all grid points in the interior 
and at the zonal boundary, using either the usual definition of numerical fluxes or 
by using the method described in the previous subsection. 

The point-wise relaxation schemes given by Eqs. (18) and (23) remain completely 
unchanged except for the right-hand side at the zonal boundaries. This is because 
spatial derivatives of the matrices A”’ and B’ do not appear on the left-hand side 
of these equations. For time-asymptotic problems the number of iterations per 
time-step can be restricted to just one. If for reasons of computational efliciency 
(increased convergence rates) it becomes necessary to use more than one iteration 
per time-step, then the most reasonable approach seems to be to perform each 
iteration in all the zones before performing the next iteration, 

For the example shown in Fig. 1, where the constant t-lines are discontinuous at 
the zonal boundary, the line-relaxation schemes given by Eqs. (19) and (24) also 
remain unchanged as in the case of the point-wise relaxation schemes. This is 
because the q-derivatives of the matrices 8’ and 8- do not appear on the left-hand 
side of these equations. However, the line relaxation scheme given by Eq. (20) needs 
to be modified at the zonal boundary of zone 2 because the backward difference 
V,, B> is not defined. Several options are available to overcome this difficulty. The 
simplest solution would be to revert to the point-wise relaxation scheme at the 
zonal-boundary points, that is, 

581/66/l-8 
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‘+~(Ab-i;,)+~(B,:+~,~) 
1 

p(Q~~l-&“‘)=r.h.s. of Eq.(17) (35) 

when 

k=l 

and 

when 

kf 1. 

A second approach would be to retain only the diagonal terms from the derivative 
V, B& which then yields 

when 

k=l 

and 

when 

k# 1. 

The results presented in this study (and obtained with the line-relaxation schemes) 
were calculated using Eq. (36). The comments made earlier regarding the number of 
iterations per time-step (for the point-wise relaxation schemes) are valid for the 
line-relaxation schemes also. 

The implicit, relaxation-zonal scheme can be summarized in the following steps: 

(1) Integration of the dependent variables at all the grid points of zone 2 
using the point-wise or the line-relaxation schemes with their special forms at the 
zonal-boundary (only one iteration). 

(2) Interpolation of the newly obtained values of [(Qj,:))P+ i - (Q$))P] along 
the zonal boundary to obtain the values of [(Qi,J,!,,,)P” - (Qj.zmaX)J’]: 
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(3) Integration of the dependent variables at the grid points of zone 1 using 
the point-wise or line-relaxation schemes (only one iteration), and the most recent 
values of C@&!maxY+’ - @&Lax )“] (a “Dirichlet-type” of boundary condition). 

(4) Interpolation of the values of (Q$,:))p+l to obtain the values of 
(Q:!L,ax)P+’ (d iscard the ones obtained as a result of the integration). 

(5) If the maximum value of the magnitudes of all [ (Q”‘)p+ ’ - ( Q’i’)p] is less 
than the prescribed tolerance limit, go to the next integration step; if not, go back 
to step 1 and reiterate. 

Step 2 and the implementation of the Dirichlet boundary condition in step 3 are 
not required for point-wise relaxation schemes or for line-relaxation schemes where 
the lines are chosen so that they belong to the same family as the zonal-boundary 
line. It was found that for the approximately factored, implicit, zonal scheme [3] at 
least two iterations per time-step were required to perform stable calculations. In 
the case of implicit, relaxation-zonal schemes one iteration per time-step has been 
found to be sufficient to maintain stability. Multiple iterations are required only to 
obtain time-accuracy. 

RESULTS 

Results are presented in this section for supersonic flow past a cylinder and the 
motion of a Lamb-type vortex through a zonal boundary. The unsteady Euler 
equations are integrated in time using relaxation schemes (point-wise relaxation 
and line relaxation) in conjunction with the new zonal-boundary conditions. 
Results are also presented for a model problem that simulates flow past a rotor- 
stator configuration. The results include time-dependent pressure contours and sur- 
face pressures. 

Cylinder in a Supersonic Free Stream 

The first test case consisted of a cylinder in supersonic flow. The free-stream 
Mach number that was chosen for this case was 2.0. The dependent variables at all 
grid points were initialized to their free-stream values. The finite-difference 
equations in addition to the various boundary conditions (including the zonal- 
boundary condition developed in this study) were integrated to convergence. The 
boundary condition used at the surface of the cylinder is implicit and characteristic 
in nature [6]. 

The grid used for the calculation is shown in Fig. 3. It consists of two zones 
patched together along the line AB. The discontinuity of the constant t-lines along 
the zonal boundary AB is clearly seen. The bow shock associated with this flow first 
appears at the surface of the cylinder and then moves outward through the zonal 
boundary to its converged position in zone 2. 
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FIG. 3. Grid for the two-zone cylinder (supersonic) calculation. 

The first calculation was performed with the first-order-accurate Osher scheme 
using a point-wise relaxation approach. Figure 4 shows the pressure contours 
obtained after 20 steps. Because of the large transients that occur during the first 
few steps of the calculation, the CFL number was initially restricted to 10.0. Table I 
gives the CFL numbers used at different stages of the calculation. The use of CFL 
numbers larger than 500.0 did not alter the convergence rate. 

Figure 5 shows the pressure contours after 35 steps and Fig. 6 shows the contours 
after 60 steps. The smooth transition of the shock from zone 1 to zone 2 even at a 
CFL number of 500.0 is evident. Figure 7 presents the pressure contours obtained 
at convergence (after 280 steps). The continuity of the contour lines across the 
zonal boundary in Figs. 6 and 7 demonstrates the quality of solutions possible with 
the present zonal scheme. The square symbols in Figs. 47 represent the converged 
shock position that is predicted by another numerical approach [lo]. 

Figure 8 displays the convergence history for the first-order-explicit scheme and 
for the implicit relaxation scheme. The explicit scheme required approximately 2700 
steps to converge. The convergence criterion chosen for this and the following cylin- 
der calculations was 

IAPI max<5x 1o-4 

(based on a free-stream density value of 1.0). The relaxation scheme with only one 
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FIG. 4. Isobars after 20 integration steps (first-order Osher scheme). 

iteration per step required 280 steps to converge, that is, the use of the implicit 
relaxation scheme increased the convergence rate by a factor of 9.65. Since the 
implicit scheme required 1.22 times as much computing time per step as the explicit 
scheme did, the actual computing cost was reduced by a factor of 7.91 with the use 
of the relaxation scheme. It should be remembered that the extra programming 
required to implement point-wise relaxation is minimal (typically, less than 100 

TABLE I 

Variation of CFL Number with Integration Step Number 

Integration step (n) CFL number 

O<n<lO 10.0 
lO<n 500.0 
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FIG. 5. Isobars after 35 integration steps (first-order Osher scheme). 

lines of Fortran). Figure 8 also shows the convergence rate for the implicit 
relaxation scheme when two iterations are used at each time step, The scheme in 
this case required only 157 steps to converge. However, since it requires 
approximately twice as much computing time per step (compared to the relaxation 
scheme with one iteration per step) the total computing cost was almost the same. 
Figure 9 shows the variation of the magnitude of the maximum residue (R) in the 
continuity equation as a function of the number of integration steps 

where the superscript c represents the element of the vector corresponding to the 
continuity equation. The relaxation scheme with one iteration per step reduces R by 
9 orders of magnitude in about 1000 steps and the scheme with two iterations per 
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FIG. 6. Isobars after 60 integration steps (first-order Osher scheme). 

step required about 500 steps to decrease R by the same amount. Table II sum- 
marizes the convergence rates and computing times for the variants of the first- 
order-accurate Osher scheme mentioned above. All computations were performed 
on a CRAY-XMP. The computer programs used in the present study were vec- 
torized for use on this machine. 

First-order-accurate schemes are insullicient to provide accurate results for a 
general class of problems. To obtain reliable results it is necessary to resort to 
second-order-accurate integration schemes. The first-order results presented in this 
study were included merely to demonstrate the increase in convergence rate (when 
compared to that obtained with the explicit zonal scheme [2]). 

Figure 10 shows the pressure contours obtained at convergence with the implicit, 
second-order-accurate Osher scheme for the cylinder problem. This scheme uses 
flux limiters to achieve the TVD property in each spatial dimension. The shock 
position is predicted more accurately than in the previous case. The contours once 
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FIG. 7. Isobars at convergence (first-order Osher scheme). 

again transition smoothly across the zonal boundary despite the discontinuity of 
the grid lines. 

Figure 11 shows the convergence rates obtained with the implicit relaxation 
approach. A point-wise relaxation scheme was used for this set of calculations. The 
CFL number was varied as in the previous case. The explicit second-order-accurate 
TVD scheme required approximately 3000 steps to converge at a CFL number of 
0.7. This translates into 97 set of computing time (3.23 sec/lOO steps) to obtain the 
converged solution. At a CFL number of 500 and with one iteration per time-step, 
the relaxation scheme converged in 485 steps. Since this variant of the relaxation 
scheme requires 1.17 times as much computing time per time-step as the explicit 
scheme does, the computing cost was reduced by a factor of 5.30 with the use of the 
relaxation scheme. Figure 11 also shows the convergence history for a point-wise 
relaxation scheme with two iterations per time-step. This scheme required 255 steps 
to converge. However, the computing time required to obtain the converged 
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FIG. 8. Convergence history for the cylinder calculation (implicit point-wise relaxation and explicit 
first-order Osher-scheme calculations). 
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FIG. 9. Time history of the maximum residual in the continuity equation (lirst-order Osher scheme). 
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TABLE II 

Computing Times for the First-Order Accurate Osher Scheme 

Type of Osher 

scheme used Explicit 

Implicit Relaxation 

1 iteration/step 2 iterations/step 

Time 100 steps, set per 
Number of steps to 

converge 
Time to set converge, 

2.46 3.00 5.88 

2700 280 157 
66.42 8.40 9.23 

FIG. 10. Isobars at convergence, using the second-order Osher scheme. 
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FIG. 11. Convergence history for the cylinder calculation (implicit point-wise relaxation and explicit 
second-order Osher-scheme calculations). 
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FIG. 12. Time history of the maximum residual in the continuity equation (second-order Osher 
scheme). 
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FIG. 13. Convergence history for the cylinder calculation (implicit point-wise and line relaxation 
second-order Osher-scheme calculationsl 

solution was approximately the same as that required for the one-iteration-per-step 
relaxation scheme. Figure 12 shows the time-variation of the magnitude of the 
maximum residue in the continuity equation (R) for the second-order accurate 
explicit and relaxation schemes. 

To determine the convergence rates that can be obtained with other relaxation 
schemes, the preceding calculation was performed once again, but with a line- 
relaxation scheme. The choice of lines was alternated between the constant t- and 
the constant q-grid lines at each integration step. The scheme required 325 steps to 
converge when only one iteration was performed at each time-step and 172 steps 
when two iterations were used at each time-step. However, the computing time 
required to obtain the converged solution was approximately the same in both 
cases. It was also found that the point-wise relaxation schemes required about 25 % 
more computing time than the line-relaxation scheme to yield the converged 
solution. 

A comparative study of the convergence histories for the point-wise and line 
relaxation schemes is shown in Fig. 13. It is clear that line relaxation with multiple 
iterations has the fastest convergence rate. However, it must also be remembered 
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FIG. 14. Convergence history for the cylinder calculation with the integration step number modified 
to include computing cost. 

that line-relaxation is more expensive than point-wise relaxation. Figure 14 is also a 
comparative study of convergence histories except that the integration step number 
has been multiplied by the computing cost per time-step (assuming the computing 
cost per time-step for the one-iteration-per step point-wise relaxation scheme to be 
unity). It can be seen from this figure that although the line-relaxation schemes are 
less expensive for the cases considered, data corresponding to all the relaxation 

TABLE III 

Computing Times for the Second-Order-Accurate Osher Scheme 

Type of 

relaxation used Point-wise Point-wise Line Line 

Number of iterations 
per step 

Time 100 steps, set per 
Number of steps to 

converge 
Time to set converge, 

1 2 1 2 
3.17 7.46 4.56 9.02 

485 255 325 172 
18.30 19.02 14.83 15.51 
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FIG. 15. Grid for the two-zone vortex calculations. 

schemes fall within a narrow band. This signifies that there are no major com- 
putational advantages in using one scheme over another. However, the point-wise 
relaxation schemes are easier to program (especially for zonal calculations) and are 
highly vectorizable without requiring additional memory. Table III summarizes 
convergence rates and computing times for all the variants of the relaxation 
approach mentioned above. 

Vortex Motion through a Zonal Boundary 

Relaxation schemes as developed in Ref. [6] can be used effectively to obtain 
time-accurate solutions (in the past they were commonly resorted to only when 
steady-state results were required). The following example demonstrates this aspect 
of the relaxation scheme. The calculation consisted of a Lamb-type analytical vor- 
tex moving through a zonal boundary. It is possible to effect vortex motion either 
by superimposing a moving free-stream condition on the vortex (in which case the 
vortex is convected along with the fluid at the free-stream velocity), or by keeping 
the vortex stationary and by moving the grid. The two approaches yield identical 
results. In this study the vortex was initialized using the procedure given in [ 111, 

FIG. 16. Isobars for the vortex calculation (at initialization). 
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FIG. 17. Isobars for the vortex (after 

FIG. 18. Isobars for the vortex calculation (after 85 steps). 
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FIG. 19. Two-zone grid for the double-airfoil calculation. 
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FIG. 20. Pressure contours at convergence for the double-airfoil calculation (both airfoils 
stationary). 

and then the grid was moved at a constant speed in a direction opposite to the 
direction in which vortex motion was desired. Figure 15 shows the two-zone grid 
used for the calculation. Only the central portion of the flow field is presented in 
Figs. 15-18 since the essential features of the vortex are contained in this region. 
The discontinuous nature of the grid lines at the zonal boundary is evident. The 
calculation was performed with the second-order-accurate Osher scheme in con- 
junction with a line-relaxation technique. Four iterations were used at each time- 
step to obtain time-accurate results. The calculation was performed at a CFL num- 
ber of 2.0. 

Figure 16 shows pressure contours at initialization. The solid core at the center of 
the constant pressure circles in this figure and the following two figures is the 
analytical center of the vortex. Figure 17 shows pressure contours after 45 
integration steps. The slope continuity of the contour lines across the zonal boun- 

,175 1 I , 
0 .2 .4 .6 .6 1 

TIME 

FIG. 21. Pressure history at midchord on the lower surface of the aft airfoil. 
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FIG. 22. Pressure history at midchord on the upper surface of the aft airfoil. 

dary is clearly seen. The center of the circles coincides with the analytical center of 
the vortex (this demonstrates the time-accuracy of the zonal scheme). Figure 18 
presents pressure contours obtained after 85 integration steps. The vortex has 
moved entirely into zone 2. The contours are circular and are not distorted (they 
are not as smooth as they are in Fig. 16 because of the coarser grid used in zone 2), 
and the center of the circles again coincides with the analytical center. 

Time-Dependent Double-Airfoil Calculation 

As stated earlier, one of the important applications of the zonal approach is the 
treatment of regions that contain parts that move relative to each other such as 

r 

FIG. 23. Pressure contours after 1000 integration steps (4.0 cycles). 
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FIG. 24. Pressure contours after 1050 integration steps (4.2 cycles). 

rotor-stator combinations in turbines. The following example was chosen to 
illustrate how one might perform such a calculation. 

The configuration chosen consists of two parabolic-arc airfoils in a supersonic 
free stream (M, = 1.5). Figure 19 shows the two-zone grid used to discretize the 
region of interest. Zone 2 is stationary (and so is the aft airfoil), and zone 1 is fixed 
to the first airfoil which moves in a downward direction. Although grid lines are 
continuous at the zonal boundary in Fig. 19, a discontinuity in grid lines will 
develop as the first airfoil and zone 1 move downward. The zonal-boundary points 
of zone 1 will slip past the zonal-boundary points of zone 2. 

Periodic boundary conditions are imposed on the upper and lower boundaries of 
both the zones. Free-stream conditions are imposed on the left boundary of zone 1 
and supersonic exit boundary conditions are imposed on the right boundary of 
zone 2. The implicit, zonal-boundary condition developed in this study is used at 
the boundary that separates the two zones. 

FIG. 25. Pressure contours after 1100 integration steps (4.4 cycles). 
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Figure 20 shows pressure contours obtained at convergence (both airfoils 
stationary) using the second-order-accurate Osher scheme. Although the calculation 
was performed with only two airfoils, for the sake of clarity this contour plot (and 
the following six contour plots) depicts four airfoils. The information regarding the 
additional airfoils is obtained from the periodicity condition. The point-wise 
relaxation technique was used for this calculation. The attached oblique shocks at 
the leading and trailing edges of both the airfoils and the expansion waves that 
emanate from the surfaces of the two airfoils are evident. The expansion waves 
impinge on the leading and trailing edge shocks and thus weaken them. 

The first airfoil was then made to move with a contant downward velocity (the 
magnitude of the velocity corresponds to a Mach number of 0.1 with respect to 
free-stream conditions). The calculation was performed at a CFL number of 
approximately 2.0. At this CFL number, 250 integration steps were required for 
each cycle (one cycle corresponds to the motion of the forward airfoil from a given 
position relative to the aft airfoil to a similar position relative to the aft airfoil just 
below the first one). Approximately two cycles were required to establish 
periodicity of the flow in time. Figure 21 shows the surface pressure history at 
midchord on the lower surface of the rear airfoil. It can be seen that after the initial 
transients (which last for about two cycles) the surface pressure at midchord 
becomes periodic in time, thus demonstrating the capability of the relaxation zonal- 
scheme in simulating periodic time-dependent flow. Figure 22 shows the surface 
pressure history at midchord on the upper surface of the aft airfoil. The behavior 
seen in Fig. 22 is similar to that seen in Fig. 21 except for a phase shift and a dif- 
ference in the mean value of the pressure. The mean value on the upper surface is 
higher than the steady-state pressure (when both the airfoils are stationary) 
whereas the mean value on the lower surface is lower than the steady-state pressure. 

Figures 23-28 show pressure contours at various positions of the forward airfoil 
(with respect to the aft airfoil) as it moves downward. These contours were 

FIG. 26. Pressure contours after 1150 integration steps (4.6 cycles). 
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F1cz.27. Pressure contours after 1200 integration steps (4.8 cycles). 

obtained after the initial transients had subsided (the results correspond to the fifth 
cycle). The downward motion of the forward airfoil results in shocks at the leading 
and trailing edges on the lower surface of this airfoil. The flow is no longer sym- 
metric as it is in Fig. 20. The motion of the forward airfoil and the flow associated 
with it create a changing upstream condition on the aft airfoil which in turn results 
in a cyclic time-dependent flow in zone 2. The interaction of the trailing-edge shock 
of the forward airfoil with the leading-edge shock of the aft airfoil is clearly seen. 
The periodicity of the flow in time is also evident in Figs. 23 and 28. The positions 
of various contour levels in these two figures are identical (in fact they are superim- 
posable). One aspect of rotor-stator configurations that is not represented in the 
present calculation is the effect of the aft airfoil on the forward airfoil (the super- 
sonic nature of the flow does not permit such an interaction). However, the zonal 

FIG. 28. Pressure contours after 1250 integration steps (5.0 cycles). 
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boundary conditions have been implemented so that an interaction, if present, will 
be accurately treated. A calculation that demonstrates the capability of the present 
zonal scheme in accurately simulating such an interaction is presented in Ref. [ 121. 

CONCLUSIONS 

A conservative zonal scheme that permits calculations on several grids that are 
patched together and that can be used in conjunction with explicit integration 
schemes (applied to the Euler equations) has been extended so that it can be used 
with implicit, relaxation schemes. Considerable increases in convergence rates have 
been demonstrated with the implicit, relaxation-zonal scheme (when compared to 
the explicit scheme). 

Results in the form of pressure contours are presented for inviscid supersonic 
flow over a cylinder. The calculation was performed on two grids patched together 
at a zonal boundary. The contours are continuous across the zonal boundary and 
the bow shock was observed to move freely from the first zone to the second even 
at a CFL number of 500. The use of the implicit, relaxation scheme was found to 
reduce the computing time by approximately a factor of 5 (compared to the explicit 
scheme). Unlike the implicit, factored zonal scheme [3], the relaxation zonal 
scheme was found to be stable even at large CFL numbers of the order of 5000. 
However, the rate of convergence reached an asymptotic value with increasing CFL 
number. The zonal-boundary condition was simpler to program for implicit, 
relaxation schemes than it was for implicit, factored schemes. 

Results that demonstrate the time accuracy of the present zonal scheme and the 
feasibility of performing calculations on patched-grids that move relative to each 
other, are also presented. This capability is extremely important in solving 
problems such as rotor-stator interaction and helicopter rotor-fuselage com- 
binations. In the case of the double airfoil calculation (chosen to model a rotor- 
stator configuration), the capability of the zonal scheme in simulating periodic, 
time-dependent flow is clearly observed. 
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